The Superstability of Pair-Potentials of Positive Type

J. T. Lewis, ${ }^{1}$ J. V. Pule ${ }^{1,2}$ and P. de Smedt ${ }^{3}$

Received September 13, 1983; revised November 17, 1983

Abstract

We prove that a pair-potential which is continuous, L^{1}, and of positive type satisfies a condition of the superstability kind with best-possible constants. The applications to statistical thermodynamics are mentioned.

KEY WORDS: Superstability; pair-potential; functions of positive type; thermodynamic limit.

1. INTRODUCTION

Following Ginibre, ${ }^{(1)}$ we say that $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is superstable if there exists a pair of constants, $A>0$ and $B \geqslant 0$, such that for each finite set $\left\{x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right\}$ of n distinct points of \mathbb{R}^{k} the following inequality holds:

$$
\begin{equation*}
\sum_{i<j} \phi\left(x_{i}-x_{j}\right) \geqslant-B n+A n^{2}\left(\max _{i, j}\left|x_{i}-x_{j}\right|\right)^{-k} \tag{1.1}
\end{equation*}
$$

Superstable pair potentials are important in the statistical thermodynamics of continuous systems (see Refs. 1 and 2, for example). In these applications use is made of the following simple consequence of (1.1):

Superstability Property. Suppose that ϕ is superstable and that Λ is an open subset of \mathbb{R}^{k}; then there exists a pair of constants $A_{\Lambda}>0$, and $B \geqslant 0$, such that for each finite set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n distinct points of Λ the following inequality holds:

$$
\begin{equation*}
\sum_{i<j} \phi\left(x_{i}-x_{j}\right) \geqslant-B n+A_{\Lambda} n^{2} / \operatorname{vol}(\Lambda) \tag{1.2}
\end{equation*}
$$

[^0]The constant A_{A} is volume independent for a given shape, but may be shape dependent.

In establishing the superstability property for a given function the following criterion, due to Ruelle, ${ }^{(2)}$ is often useful:

Ruelle's Criterion. Suppose that $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ satisfies the condition $(\mathrm{R}): \phi$ is a continuous L^{1} function of positive type; then ϕ is superstable if

$$
\hat{\phi}(0)=\int_{\mathbb{R}^{k}} \phi(x) d x
$$

is strictly positive.
Our aim in this paper is to prove a result along the lines of (1.2) for a function satisfying Ruelle's criterion, but with best-possible constants. The point of this is to provide us with a tool for proving the existence of limits by sandwiching a function between bounds which become equal in the thermodynamic limit. In order to get best-possible constants we have to be able to control the shape dependence. Following Fisher, ${ }^{(3)}$ we define the shape factor $\sigma(\Lambda, h)$ for each $h>0$ and each open set Λ by

$$
\begin{equation*}
\sigma(\Lambda, h)=\operatorname{vol}\left(\Lambda^{h} \backslash \Lambda\right) / \operatorname{vol}(\Lambda) \tag{1.3}
\end{equation*}
$$

where

$$
\Lambda^{h}=\{x: d(x, \Lambda)<h\} \quad \text { and } \quad d(x, \Lambda)=\inf _{y \in \Lambda}|x-y|
$$

2. STATEMENT OF RESULTS

We state our first result as a lemma:
Lemma. Let $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ satisfy condition (\mathbb{R}); then for each $h>0$, each open set Λ of R^{k}, and each finite set of n distinct points of Λ, the following inequality holds:

$$
\begin{equation*}
\sum_{1 \leqslant i, j \leqslant n} \phi\left(x_{i}-x_{j}\right) \geqslant \frac{n^{2}}{\operatorname{vol}(\Lambda)} \frac{[\hat{\phi}(0)-\delta(h)]^{2}}{\left[\hat{\phi}(0)+\delta(h)+\sigma(\Lambda, h)\|\phi\|_{1}\right]} \tag{2.1}
\end{equation*}
$$

where

$$
\delta(h)=2 \int_{|x|>h}|\phi(x)| d x
$$

In applications of the Lemma in statistical thermodynamics we deal with a sequence of sets whose shape factors converge to zero; such sequences were introduced in Ref. 3. A sequence $\left\{\Lambda_{l}: l=1,2, \ldots\right\}$ of
open subsets of \mathbb{R}^{k} is said to satisfy condition (F) if (F 1) and (F2) hold:
(F1) For each $h>0$ we have $\lim _{l \rightarrow \infty} \sigma\left(\Lambda_{l}, h\right)=0$.
(F2) For each $R>0$ there is an integer $l(R)$ such that $B(R) \subset \Lambda_{l}$ for all $l>l(R)$, where $B(R)=\{x:|x| \leqslant R\}$.

The following Theorem is an easy consequence of the Lemma:
Theorem. Let $\left\{\Lambda_{l}: l=1,2, \ldots\right\}$ be a sequence of open subsets of \mathbb{R}^{k} satisfying condition (F); let $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a function satisfying condition (R) and such that $\hat{\phi}(0)>0$. Then, given $\epsilon>0$, there exists an integer $l(\epsilon)$ such that, for each finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ of n distinct points of Λ_{l}, the following inequality holds:

$$
\begin{equation*}
\sum_{i<j} \phi\left(x_{i}-x_{j}\right) \geqslant-\frac{1}{2} \phi(0) n+\frac{1}{2}\left[(\hat{\phi}(0)-\epsilon) n^{2}\right] / \operatorname{vol}\left(\Lambda_{l}\right) \tag{2.2}
\end{equation*}
$$

The constants $\phi(0)$ and $\hat{\phi}(0)$ in (2.2) are best possible.
It has been known for some time that a result of this kind must be true under suitable conditions. Lieb ${ }^{(4)}$ sketched a proof and used the result to obtain the high-density limit of the ground-state energy per particle for an imperfect Bose gas; see also Ref. 5. Ruelle ${ }^{(2)}$ gave a detailed proof, but his estimates resulted in a loss of best-possible constants. We have used the above theorem in Ref. 6 to prove the persistence of condensation in the van der Waals limit of an interacting boson gas. Conlon ${ }^{(7)}$ has used it to prove that the ground-state energy per particle of a classical gas in the thermodynamic limit at high density ρ is $\frac{1}{2} \rho \hat{\phi}(0)-\frac{1}{2} \phi(0)$.

3. PROOF OF THE LEMMA

Recall the following result about functions of positive type (see Dixmier, ${ }^{(8)}$ for example):

Proposition. For a continuous function $\phi: \mathbb{R} \xrightarrow{k} \mathbb{R}$ the following are equivalent:
(P1) ϕ is of positive type.
(P2) ϕ is bounded, and for each bounded measure μ on R^{k} :

$$
\iint \phi(x-y) \mu(d x) \mu(d y) \geqslant 0
$$

Recall also that
If ϕ is of positive type then $\phi(-x)=\phi(x)$ and $|\phi(x)|<\phi(0)$.
From (P2) it follows that if ϕ is continuous and of positive type then it defines a positive-definite quadratic form

$$
\langle\mu, \nu\rangle_{\phi}=\iint \phi(x-y) \mu(d x) \nu(d y)
$$

on the linear space of bounded measures on \mathbb{R}^{k}, so that the CauchySchwartz inequality holds:

$$
\begin{equation*}
\left|\langle\mu, \nu\rangle_{\phi}\right|^{2} \leqslant\langle\mu, \mu\rangle_{\phi}\langle\nu, \nu\rangle_{\phi} \tag{3.1}
\end{equation*}
$$

Applying (3.1) with $\mu(d x)=\chi_{\Lambda^{n}}(x) d x$ and $\nu(d x)=\sum_{i=1}^{n} \delta_{x_{i}}(d x)$, where $\chi_{\Lambda^{b}}$ is the indicator function of the set Λ^{h} and δ_{x} is the Dirac measure concentrated at the point x, we have

$$
\begin{equation*}
\sum_{i, j} \phi\left(x_{i}-x_{j}\right) \geqslant\left|\sum_{i=1}^{n} A_{\Lambda}^{h}\left(x_{i}\right)\right|^{2} / B_{\Lambda}^{h} \tag{3.2}
\end{equation*}
$$

with

$$
A_{\Lambda}^{h}(y)=\int_{\Lambda^{h}} \phi(x-y) d x \quad \text { and } \quad B_{\Lambda}^{h}=\int_{\Lambda^{h}} A_{\Lambda}^{h}(y) d y
$$

Then

$$
\begin{equation*}
\left|A_{\Lambda}^{h}(y)-\hat{\phi}(0)\right| \leqslant\left|A_{\Lambda}^{h}(y)-\int_{B(h)} \phi(x) d x\right|+\frac{1}{2} \delta(h) \tag{3.3}
\end{equation*}
$$

But around each point y of Λ there is a ball of radius h lying inside Λ^{h}, so that for each y in Λ we have

$$
\begin{equation*}
\left|A_{\Lambda}^{h}(y)-\int_{B(h)} \phi(x) d x\right|=\left|\int_{\left(\Lambda^{h}-y\right) \cap\{x:\{x \mid>h\}} \phi(x) d x\right| \leqslant \frac{1}{2} \delta(h) \tag{3.4}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left|A_{\Lambda}^{h}(y)-\hat{\phi}(0)\right| \leqslant \delta(h) \tag{3.5}
\end{equation*}
$$

for all y in Λ. Now

$$
\begin{align*}
\left|B_{\Lambda}^{h}-\operatorname{vol}(\Lambda) \hat{\phi}(0)\right| & \leqslant\left|B_{\Lambda}^{h}-\int_{\Lambda^{h}} \int_{\Lambda} \phi(x-y) d x d y\right|+\left|\int_{\Lambda} A_{\Lambda}^{h}(y) d y-\hat{\phi}(0) \int_{\Lambda} d y\right| \\
& =\left|\int_{\Lambda^{h}} \int_{\Lambda^{h} \backslash \Lambda} \phi(x-y) d x d y\right|+\delta(h) \operatorname{vol}(\Lambda) \\
& \leqslant \int_{\mathbb{R}^{k}} \int_{\Lambda^{h} \backslash \Lambda}|\phi(x-y)| d x d y+\delta(h) \operatorname{vol}(\Lambda) \\
& =\|\phi\|_{1} \operatorname{vol}\left(\Lambda^{h} \backslash \Lambda\right)+\delta(h) \operatorname{vol}(\Lambda) \tag{3.6}
\end{align*}
$$

Using (3.4) and (3.6) in (3.2) we get (2.1).

4. PROOF OF THE THEOREM

It follows from the Lemma that if $\hat{\phi}(0)>0$ then

$$
\sum_{i, j} \phi\left(x_{i}-x_{j}\right) \geqslant \frac{n^{2}}{\operatorname{vol}(\Lambda)}\left[\hat{\phi}(0)-3 \delta(h)-\sigma(\Lambda, h)\|\phi\|_{1}\right]
$$

Since ϕ is in $L^{1}\left(R^{k}\right)$ we can choose h so that $\delta(h)<\epsilon / 4$; since $\left\{\Lambda_{l}: l=1\right.$, $2, \ldots\}$ satisfies condition (F) we can choose $l(\epsilon)$ such that $\sigma\left(\Lambda_{l}, h\right)\|\boldsymbol{\phi}\|_{1}$ $<\epsilon / 4$ for all $l>l(\epsilon)$. This establishes (2.2).

Suppose now that there is a sequence $\left\{A_{l}: l=1,2, \ldots\right\}$ of positive constants converging to $A>\hat{\phi}(0)$ and such that

$$
\begin{equation*}
\sum_{i, j} \phi\left(x_{i}-x_{j}\right) \geqslant \frac{n^{2}}{\operatorname{vol}\left(\Lambda_{l}\right)} A_{l} \tag{4.1}
\end{equation*}
$$

for each finite set $\left\{x_{1}, \ldots, x_{n}\right\}$ of n distinct points of Λ_{l}. Then we can choose $\epsilon>0$ such that $A-\epsilon>\hat{\phi}(0)$. Integrating both sides of (4.1) over Λ^{n} we have

$$
\begin{aligned}
& n \phi(0)+\frac{n(n-1)}{\operatorname{vol}\left(\Lambda_{l}\right)}[\hat{\phi}(0)+\epsilon / 2] \\
& \quad \geqslant\left[\operatorname{vol}\left(\Lambda_{l}\right)\right]^{-n} \int_{\Lambda^{n}} \cdots \int\left\{\sum_{i, j} \phi\left(x_{i}-x_{j}\right)\right\} d x_{1} \ldots d x_{n} \\
& \quad \geqslant \frac{n^{2}}{\operatorname{vol}\left(\Lambda_{l}\right)}(A-\epsilon / 2)
\end{aligned}
$$

for l sufficiently large. Letting $n \rightarrow \infty$ we have $A-\epsilon<\hat{\phi}(0)$, contradicting the hypothesis. The optimality of $\phi(0)$ is now clear.

REFERENCES

1. J. Ginibre, On the Asymptotic Exactness of the Bogoliubov Approximation for Many Boson Systems, Commun. Math. Phys. 8:26--51 (1968).
2. D. Ruelle, Classical Statistical Mechanics of a System of Particles, Helv. Phys. Acta 36: 183-197 (1963).
3. M. E. Fisher, The Free Energy of a Macroscopic System, Arch. Rat. Mech. Anal. 17:377410 (1964).
4. E. H. Lieb, Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas, Phys. Rev. 130:2518-2528 (1963).
5. E. H. Lieb and M. De Llano, Some Exact Results in the Hartree-Fock Theory of a Many-Fermion System at High Densities, Phys. Lett. 37B:47-49 (1971).
6. J. T. Lewis, J. V. Pulè, and P. de Smedt, Boson Condensation in the van der Waals Limit in a Gas of Interacting Bosons, preprint, DIAS-TP-83-48, Dublin Institute for Advanced Studies, 1983.
7. J. Conlon, The Ground-State Energy of a Classical Gas, preprint, Institute of Theoretical Physics, Vienna (1983).
8. J. Dixmier, Les C^{*}-Algebres et leur Representations (Gauthier-Villars, Paris, 1964).

[^0]: ${ }^{1}$ Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland.
 ${ }^{2}$ University College, Belfield, Dublin 4.
 ${ }^{3}$ Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, 3030 Heverlee, Belgium.

